CHAPTER 1

Introduction

Parallel distributed processing provides a new way of thinking about per-
ception, memory, learning, and thinking—and about basic computational
mechanisms for intelligent information processing in general. These new
ways of thinking have all been captured in simulation models. Our own
understanding of parallel distributed processing (PDP) has come about
largely through hands-on experimentation with these models. And, in
teaching PDP to others, we have discovered that their understanding is
enhanced through the same kind of hands-on simulation experience.

This handbook is intended to help a wider audience gain this kind of
experience. It makes many of the simulation models discussed in the two
PDP volumes (McClelland, Rumelhart, & the PDP Research Group, 1986;
Rumelhart, McClelland, & the PDP Research Group, 1986) available in a
form that is both accessible and easy to use. The handbook also provides
what we hope are relatively accessible expositions of some of the main
mathematical results that underlie the simulation models. And it provides
a number of prepared exercises to help the reader begin exploring the
simulation programs.

This handbook is intended for use in conjunction with the two PDP
volumes, particularly for users new to PDP. However, readers who already
have some familiarity with PDP models should find that it is possible to use
the simulation programs without referring to the PDP volumes. Most
important for readers who are new to PDP is the introduction to the PDP
framework found in Chapters 1 to 4 of the first PDP volume. Other
chapters in the PDP volumes are less essential, since this handbook gen-
erally reviews specific material where relevant. However, the PDP volumes
generally delve more deeply into the relevant theoretical and empirical



2 THE PROGRAMS

background. Rather than repeat this material, we give pointers throughout
the handbook to relevant material from the PDP volumes.

In this chapter, we provide some general information about the use of
this handbook. We begin by describing the nature of the software that
accompanies this handbook and the hardware you will need to run it. Then
we describe what is in each chapter and how the chapters are organized.
The final sections of this chapter describe some general conventions and
design decisions we have made to help the reader make the best possible
use of the handbook and the software that comes with it.

THE PROGRAMS: WHAT IS PROVIDED AND WHAT IS
NEEDED TO RUN THEM!

This book comes with two 5%" floppy disks, which contain a set of seven
simulation programs as well as auxiliary files that are needed to execute the
exercises described in the following chapters. The disks also have utilities
for making simple graphs from saved results. In keeping with our goal of
maximum accessibility, our programs are compiled for use on IBM PCs or
PC-compatible hardware.

We also provide the source code for the programs (written in C) so that
users can modify the programs and adapt them for their own purposes.
This also makes it possible to copy the programs to more powerful comput-
ers, where they may be recompiled.

The minimal hardware requirements to run the programs are

® An IBM PC or PC-compatible computer with two floppy disk drives
or one floppy and one Winchester disk drive.

® A standard monochrome 24 line by 80 character display.
® At least 256 kbytes of memory.
® The MS-DOS operating system (Version 2.0 or higher).

If you are using a two-floppy system, you will need several floppy disks.
Typically, one floppy will hold two programs in the unpacked, ready-to-run
state, together with the relevant auxiliary files. To carry out some of the
exercises, you will need to be able to edit files; that is, you will need a text
editor. It is also preferrable to have more than 256 kbytes of memory, but
this is not essential for running any of the basic exercises.

! Please see the software license agreement at the back of this handbook for several important
disclaimers an for licensing information concerning the use, modification, and dissemination
of this software.



1. INTRODUCTION 3

For use on PCs, a math coprocessor (e.g., the 8087) is strongly recom-
mended. All of the programs do extensive floating-point computation and
they will run much faster with the coprocessor than without it. On PCs
without a coprocessor, some of the exercises in Chapters 2, 5, and 7 will
run slower than is optimal for interactive experimentation.

For recompilation on PCs and PC-compatibles, we recommend Microsoft
C, which is what we used to produce the PC-executable versions of the pro-
grams. We cannot guarantee that other compilers will offer all of the
necessary libraries (especially input/output handling, interrupt handling,
and math functions such as exp and square root) or that they will not have
bugs we have not encountered. For recompilation on UNIX systems, all
that is required is the Portable C compiler, augmented by the CURSES
screen-oriented input/output package. On UNIX systems, the programs
will run on.regular terminals (such as the DEC VT-100 or Zenith Z19) or
under terminal-emulation programs on workstations such as IBM-RTs,
MicroVAXes, or Suns.

OVERVIEW OF THE HANDBOOK

The handbook consists of seven chapters, including this brief introduc-
tion, plus several appendixes. Chapters 2 and 3 are devoted to models that
focus primarily on processing. In Chapter 2, we describe a class of PDP
models called interactive activation and competition models. Models of this
kind have been explored by a number of investigators, including ourselves
and Grossberg (1976, 1978, 1980). The chapter goes over some of the
basic mathematical properties of this sort of model and uses the model to
illustrate many of the basic processing capabilities of PDP networks. The
chapter then introduces the reader to our simulation programs through the
iac program. This program implements the interactive activation and com-
petition mechanism and applies it to the problems of memory retrieval,
spontaneous generalization, and default assignment using the "Jets and
Sharks" example described in Chapter 1 of the PDP volumes (originally
from McClelland, 1981). (Henceforth, we will refer to chapters in the PDP
volumes by PDP:N, where N is the chapter number. Chapters 1-13 are in
Volume 1; Chapters 14-26 are in Volume 2).

Chapter 2 also serves as an introduction to the package of programs as a
whole. Commands that are used in all of the programs are described there,
and the exercises are set up to give the reader some general facility with the
package, as well as specific experience with interactive activation and com-
petition networks.

Chapter 3 considers several related models that fall into the broad
category of constraint satisfaction models. These include what we call the
schema model (PDP:14), the Boltzmann machine (PDP:7), and the



4  OVERVIEW OF THE HANDBOOK

harmonium (PDP:6). The chapter uses several of the examples described in
the original chapters, allowing the reader to replicate some of the basic
simulations that can be found there.

Chapters 4, 5, and 6 describe PDP models of learning. They can be
taken up after Chapter 2 if desired. In Chapter 4, two classical learning
rules are introduced: the Hebb rule and the delta rule. These learning
schemes are applied in a simulation program called pa that implements a
classic type of PDP network, the pattern associator, a simple one-layer
feedforward network. This class of networks is analyzed in PDP:9 and
PDP:11, and is applied to psychological issues, such as the basis of lawful
behavior, in PDP:18 and PDP:19.

The network architecture simulated in Chapter 4 involves only a single
layer of modifiable connections. Chapter 5 generalizes the architecture to
multilayer, feedforward networks, and introduces mechanisms for training
hidden units—processing units that do not receive any direct input from the
outside. This chapter focuses primarily on the bp program, which imple-
ments the back propagation algorithm introduced in PDP:8.

In Chapter 6, two other architectures for learning are considered: the
auto-associator and the competitive-learning network. The auto-associator
has been used most extensively by James Anderson (1977) and Kohonen
(1977); some applications of the auto-associator to issues of learning and
memory are discussed in PDP:17 and PDP:25. The competitive-learning
scheme (and variants of it) have also been widely studied (e.g., von der
Malsberg, 1973, and Grossberg, 1976); our applications of this scheme are
described in PDP:5. Things are set up so that readers can proceed from the
pa model described in Chapter 4 directly to any of the other learning
models without missing any essential information.

Chapter 7 considers the use of PDP models to simulate psychological
phenomena and presents the ia simulation program, which implements the
interactive activation model of visual word recognition. This model is men-
tioned in PDP:1 and PDP:16, and is described in detail in two earlier publi-
cations (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982).
This chapter can be taken up immediately after Chapter 2 if desired.

The appendixes provide reference information that will be of use
throughout the book. Appendix A describes how to unpack the programs
for the PC and how to set up working directories in which to run the exer-
cises. Appendix B provides a command summary, listing all of the com-
mands along with the programs in which they are available, with a brief
description of each and pointers to more information. Appendix C
describes the construction of files containing network and display specifica-
tions for use with the various programs. Appendix D explains how to use
the utility programs that are supplied for making simple graphs. Appendix
E provides some feedback on the outcome and interpretation of selected
exercises. Appendix F provides an overview of the source code for readers



I. INTRODUCTION 5

with a background in C who wish to modify and recompile the programs.
Appendix G explains how to recompile the programs for various computers.

ORGANIZATION OF EACH CHAPTER

Each chapter begins with a brief overview, followed by one or more
parts, each devoted to a model or a set of related models. Each part begins
with a theoretical background section that is designed to provide an accessi-
ble introductory presentation of the relevant mathematical background for
the models described in this part of the chapter. After the background sec-
tion, one or more related models are presented. Each model begins with a
description of the assumptions of the model and any variations on these
assumptions that will be considered. This is followed by a description of
the implementation of the essential routines that carry out the key compu-
tations prescribed by the model and a description of how the computer
simulation of the model is to be run. The description of how the model is
run consists of an overview explaining basically how the simulation is to be
used, followed by a list of the commands and variables that need be under-
stood to use the simulation program that implements the model. Finally,
the presentation of each model ends with a series of exercises, the first of
which is used as an example to illustrate in detail how to run the model.
The exercises are generally accompanied by hints, which are intended to
make sure the reader knows what is needed to carry out the exercise, both
in terms of the commands needed to get the program to do what is neces-
sary and in terms of any more conceptual points that might be relevant.

MODELS AND PROGRAMS

In general, the relation of models to programs may be many to one.
That is, more than one model may be implemented by the same program,
the different models are implemented by means of switches that alter the
program’s behavior. This makes more efficient use of disk space and cuts
down some on the number of different programs that need to be learned
about. Furthermore, the programs generally make use of the same inter-
face and display routines, and most of the commands are the same from
one program to the next,

In view of the similarity between the simulation models, the information
that is given when each new program is introduced is restricted primarily to
what is new. Readers who wish to dive into the middle of the book, then,
may find that they need to refer back to commands or features that were



6  GENERAL CONVENTIONS AND CONSIDERATIONS

introduced earlier. The command summary in Appendix B should help
make this as painless as possible.

SOME GENERAL CONVENTIONS AND CONSIDERATIONS

In planning this handbook, we had to make some design decisions and to
adopt some fairly arbitrary conventions. Here we will describe some of the
general conventions that are used in the book and in the computer pro-
grams.

Mathematical Notation

We have adopted a mathematical notation that is internally consistent
within this handbook and that facilitates translation between the description
of the models in the text and the conventions used to access variables in
the programs. Unfortunately, this means that the notation is not always
consistent with that introduced in the relevant chapters of the PDP
volumes. Here follows an enumeration of the key features of the notation
system we have adopted. We begin with the conventions we have used in
writing equations to describe models and in explicating their mathematical
background.

Scalars. Scalar (single-valued) variables are given in italic typeface. The
names of parameters are chosen to be mnemonic words or abbreviations
where possible. For example, the decay parameter is called decay .

Vectors. Vector (multivalued) variables (e.g., the vector of activations
of a set of units) are given in boldface; for example, the external input pat-
tern is called extinput. An element of such a vector is given in italic
typeface with a subscript. Thus, the ith element of the external input is
denoted extinput;. Vectors are often members of larger sets of vectors; in
this case, a whole vector may be given a subscript. For example, the ith
input pattern in a set of patterns would be denoted ipattern;.

Weight matrices. Matrix variables are given in uppercase boldface; for
example, a weight matrix might be denoted W. An element of a weight
matrix is given in lowercase italic, subscripted first by the row index and
then by the column index. The row index corresponds to the index of the
receiving unit, and the column index corresponds to the index of the send-
ing unit. Thus the weight to unit / from unit j would be found in the jth
column of the ith row of the matrix, and is written w;;.



1. INTRODUCTION 7

Counting. We follow the C language convention and count from 0.
Thus if there are n elements in a vector, the indexes run from 0 to n—1.
Time is a bit special in this regard. Time 0 (¢y) is the time before process-
ing begins; the state of a network at 7y can be called its "initial state." Time
counters are incremented as soon as processing begins within each time
step.

Pseudo-C Code

In the chapters, we occasionally give pieces of computer code to illustrate
the implementation of some of the key routines in our simulation pro-
grams. The examples are written in "pseudo-C"; details such as declara-
tions are left out. Note that the pseudocode printed in the text for illustrat-
ing the implementation of the programs is generally not identical to the
actual source code; the program examples are intended to make the basic
characteristics of the implementation clear rather than to clutter the
reader’s mind with the details and speed-up hacks that are to be found in

the actual programs.
Several features of C need to be understood to read the pseudo-C code.

These are listed below.

Comments. Comments in C programs begin with "/*" and end with
"*/". Thus the following would be treated as a comment by the compiler:

/ * This is a comment */

We use this convention to introduce comments into the pseudocode so that
the code is easier for you to follow.

If statements. Often in the pseudocode we will make use of if state-
ments. These should be fairly self-explanatory in most cases. Sometimes,
however, we use the form:

if )

where x is some variable. This expression means "if the value of x is not
equal to 0" For flag variables, which have the value 0 when off, this
corresponds to "if the flag is on" Another notation for the same thing
would be

ifGx!=0)

The exclamation point means "not."



8 GENERAL CONVENTIONS AND CONSIDERATIONS

Semicolons and curly braces. Semicolons and curly braces are key
features of C syntax. The semicclon is used to terminate a statement.
Open- ("{") and close- ("}") curly braces are used to group statements
together to be treated as a single statement. Thus

if (expression) statement;
can be expanded to

if (expression)
statement;
statement;

)

Curly braces are also used to bracket the body of a subroutine.

C loop constructs. In our programs the typical loop construct is the for
loop. For loops look like this:

Jor (i=0;i< n;i++) |
statements;
}

The parentheses contain three special statements called the initialization
statement, the end test, and the incrementation statement, respectively. In
this example we initialize the variable i to 0. The end test is a statement
that is evaluated at the beginning of each pass, before executing the state-
ments in the loop; if the end test fails, control passes to the statement after
the closing curly brace. In this case, the end test fails when the value of i
is greater than or equal to n. The incrementation statement is executed at
the end of each pass through the loop before the end test is done to see if
the loop will be executed again. The notation

i+
indicates incrementation of the index i by 1. Thus, the above expression
executes the statements enclosed in the curly braces once for each value of

i from 0 through n—1, for a total of n passes through the loop.

Array indexes. Array indexes in C are enclosed in square brackets, with
the fastest moving array element in the right-most position. Thus,

wlillj]



1. INTRODUCTION 9

refers to the element in the ith row and jth column of the array. Contigu-
ous elements in the array are the contiguous members of the same row.
The above notation, then, is the notation that refers to the weight to unit i
from unit j, and corresponds to wj;.

Incrementing and related constructs. We have already described the
notation for incrementing a variable by 1. To increment a variable by the
value of an arbitrary expression, the notation is

<variable> += <expression>

Thus,
x += a*b,

means "increment x by a times b." There are also related expressions for
decrementing (—=), multiplying (*=), and dividing (/=). Thus,

x/=1

means "set x to x divided by 7."

The reader should note that there are a number of features and conven-
tions in C that are exploited extensively in the actual code that can only be
understood with some background in this language. Users who do not
know C will not be able to interpret the actual code. The place to go for
this background is the book The C Programming Language by Kernighan
and Ritchie (1978).

Computer Programs and User Interface

Our goals in writing the programs were to make them both as flexible as
possible and as easy as possible to use, especially for running the core exer-
cises discussed in each chapter of this book. We have achieved these
somewhat contradictory goals as follows. Flexibility is achieved by allowing
the user to specify the details of the network configuration and of the lay-
out of the displays shown on the screen at run time, via files that are read
and interpreted by the program. Ease of use is achieved by providing the
user with the files to run the core exercises and by keeping the command
interface and the names of variables consistent from program to program
wherever possible. Full exploitation of the flexibility provided by the pro-
grams requires the user to learn how to construct network configuration
files and display configuration (or template) files, but this is only necessary
when the user wishes to apply a program to some new problem of his or
her own.



10  BEFORE YOU START

Another aspect of the flexibility of the programs is their permissiveness.
In general, we have allowed the user to examine and set as many of the
variables in each program as possible, including basic network configuration
variables that should not be changed in the middle of a run. The worst that
can happen is that the programs will crash under these circumstances; it is,
therefore, wise not to experiment with changing them if losing the state of
a program would be costly.

BEFORE YOU START

Before you dive into your first PDP model, we would like to offer both
an exhortation and a disclaimer, The exhortation is to take what we offer
here, not as a set of fixed tasks to be undertaken, but as raw material for
your own explorations. We have presented the material following a struc-
tured plan, but this does not mean that you should follow it any more than
you need to to meet your own goals. We have learned the most by experi-
menting with and adapting ideas that have come to us from other people
rather than from sticking closely to what they have offered, and we hope
that you will be able to do the same thing. The flexibility that has been
built into these programs is intended to make exploration as easy as possi-
ble, and we provide source code so that users can change the programs and
adapt them to their own needs and problems as they see fit.

The disclaimer is that we cannot be sure the programs are perfectly bug
free. They have all been extensively tested and they work for the core
exercises; but it is possible that some users will discover probiems or bugs
in undertaking some of the more open-ended extended exercises. If you
have such a problem, we hope that you will be able to find ways of working
around it as much as possible or that you will be able to fix it yourself. In
any case, please let us know of the problems you encounter? While we can-
not offer to provide consultation or fixes for every reader who encounters a
problem, we will use your input to improve the package for future users.

2 Send bug reports, problems, and suggestions to PDP Software Inquiries, ¢/o Texts Manager,
MIT Press, 55 Hayward Street, Cambridge, MA 02142. Enclose a stamped, self-addressed
envelope, and we will send an acknowledgment of your problem along with accumulated
advice, fixes, work-arounds, and information about availability of subsequent releases.



